Ein systematischer Ansatz zur Ausnutzung von Korrelationen aufeinander folgender Merkmalsvektoren in der automatischen Spracherkennung

Überblick

Bekannte Schwachstellen heutiger automatischer Spracherkennungssysteme sind die mangelnde Robustheit gegenüber gestörten (z.B. verrauschten) Eingangssignalen, „Interframe-ASR“ 2 sowie die unzulängliche Modellierung einer Merkmalsvektortrajektorie aufgrund der üblichen conditional independence Annahme, die besagt, dass die Wahrscheinlichkeit für einen Merkmalsvektor lediglich vom Hidden Markov Modellzustand abhängt. Ausgehend von einer Erweiterung der Herleitung des Spracherkenners aus der Bayes’schen Entscheidungsregel, welche das Vorhandensein von gestörten Merkmalsvektoren und Korrelationen aufeinander Sprachrahmen explizit berücksichtigt, wurden zunächst Methoden der geräuschrobusten Erkennung untersucht. Die Korrelationen aufeinander folgender Merkmalsvektoren wurden dabei mit schaltenden dynamischen Modellen erfasst. Der Schwerpunkt der Arbeiten im zweiten Projektabschnitt ist die Entwicklung hybrider Erkennerstrukturen, die die Vorteile der Modellierung mit dynamischen Modellen einerseits und hidden Markov Modellen andererseits vereinen sollen, um zu einer insgesamt höheren Erkennungsrate zu gelangen.

DFG-Verfahren Sachbeihilfen

Key Facts

Grant Number:
61519056
Laufzeit:
01/2008 - 12/2011
Gefördert durch:
DFG
Website:
DFG-Datenbank gepris

Detailinformationen

Projektleitung

contact-box image

Prof. Dr. Reinhold Häb-Umbach

Nachrichtentechnik (NT) / Heinz Nixdorf Institut

Zur Person