UPB Logo
Contact
  • Deutsch
  • English
    • Open Page "Studies"
      • Open Page "Prospective students"
      • Eltern
    • Students
    • International students & prospective students
    • School & teachers
    • Open Page "Teaching"
      • Open Page "Profile"
      • Academic Mission Statement
      • Digitalization & E-Learning
      • Open Source
      • Open Page "Teaching"
      • Competence-Oriented Education
      • Exam design
      • Organizing Courses
      • Course Evaluations
      • General Education Requirements
      • Lecture series on sustainability
    • AI in teaching
      • Open Page "Digital Teaching"
      • Digital Teaching
      • Digital learning rooms
      • Digital test formats
      • Digital test formats
      • Digital tools
      • FAQs
      • Open Page "Qualification and service"
      • Higher Education Development Unit
      • Writing Center
      • Internal Professional Development and Further Education
      • Interdisciplinary Cooperation to Improve Quality in Teacher Education (PLAZ)
      • Faculty-Specific Initiatives
      • Internationally Focused Academics
      • Open Page "Educational innovations"
      • Teaching Awards at UPB
      • Fellowship
      • Best-Practices Teaching Symposium
      • Teaching Projects
      • E-Learning Label
      • Open Page "Teaching research networks"
      • DH.NRW
      • Foundation for Innovation in Higher Education
      • Centre for Higher Mathematics Education (khdm)
      • Academic quality
    • Open Page "Research"
      • Open Page "Research profile"
      • Key research areas
      • Interdisciplinary research institutes
      • Research in the faculties
      • Collaborative Research Centres
      • Graduate Programmes and Schools
      • DFG Research Units
      • DFG Priority Programmes
      • ERC Grants
      • Leibniz Prize Winners
      • Heinz Maier Leibnitz Prize Winners
      • Open Page "Academic career"
      • Early career stages
      • Professorship at Paderborn University
      • Job portal
      • University as an employer
      • Open Page "Research funding and services"
      • Funding and application advice
      • Legal advice in research and development
      • Ethics Committee
      • Research Information at UPB
      • Research data management
      • Publication Service of the University Library
      • Open Access Portal
      • Inventions & patents
      • Start-ups and entrepreneurship
      • Network for Interdisciplinary Research
      • Internal grants (Committee for Research and Junior Academics)
      • Open Page "Research culture"
      • Research-Oriented Standards on Gender Equality
      • Gender & Diversity Consulting
      • Ethics committee
      • Good Research Practice
      • Human Resources Strategy for Researchers
    • Open Page "Transfer"
    • Creating together
    • Innovating together
    • Reflecting together
    • Contacts
    • Open Page "International"
    • International Profile
    • International Campus
    • Open Page "University"
      • Open Page "About us"
      • Mission Statement
      • History
      • Important Personalities and Pioneers
      • University Society
      • Alumni
      • Unishop
      • Open Page "Our organisation"
      • University Executive Board
      • Advisory Board
      • Senate
      • Faculties
      • Central University Administration
      • Central research institutes
      • Central operating units
      • Agencies and authorised representatives
      • Anlauf- und Beratungsstellen
      • Universitätskommissionen
      • Open Page "Working at UPB"
      • Vacancies
      • Equality, Compatibility and Diversity
      • Welcome Services
      • Personnel development
      • Scientific career paths
      • Dual Career Service
      • Healthy university
      • Social, sporting and cultural activities
    • Maps & directions
    • Open Page "Faculties"
    • Faculty of Arts and Humanities
    • Faculty of Business Administration and Economics
    • Faculty of Science
    • Faculty of Mechanical Engineering
    • Faculty of Computer Science, Electrical Engineering and Mathematics
  • Press
Researchers at Paderborn University develop a new technology for manipulating light
Researchers at Paderborn University develop a new technology for manipulating light
Contact
  1. Paderborn University
Back to the news list

Nano­struc­tured Sur­faces for Fu­ture Quantum Com­puter Chips

22.06.2022  |  Research,  Quantum Computation

A contribution from Pressemitteilung

Share post on:

  • Share on Instagram
  • Teilen auf Twitter
  • Teilen auf Facebook
  • Teilen auf Xing
  • Teilen auf LinkedIn
  • Teilen über E-Mail
  • Link kopieren

Researchers at Paderborn University develop a new technology for manipulating light

Quantum computers are one of the key future technologies of the 21st century. Researchers at Paderborn University, working under Professor Thomas Zentgraf and in cooperation with colleagues from the Australian National University and Singapore University of Technology and Design, have developed a new technology for manipulating light that can be used as a basis for future optical quantum computers. The results have now been published in the internationally renowned professional journal “Nature Photonics.”

New optical elements for manipulating light will allow for more advanced applications in modern information technology, particularly in quantum computers. However, a major challenge that remains is non-reciprocal light propagation through nanostructured surfaces, where these surfaces have been manipulated at a tiny scale. Professor Thomas Zentgraf, head of the working group for ultrafast nanophotonics at Paderborn University, explains, “In reciprocal propagation, light can take the same path forward and backward through a structure; however, non-reciprocal propagation is comparable to a one-way street where it can only spread out in one direction.” Non-reciprocity is a special characteristic in optics that causes light to produce different material characteristics when its direction is reversed. One example would be a window made of glass that is transparent from one side and lets light through, but which acts as a mirror on the other side and reflects the light. This is known as duality. “In the field of photonics, such a duality can be very helpful in developing innovative optical elements for manipulating light,” says Zentgraf.

In a current collaboration between his working group at Paderborn University and researchers at the Australian National University and Singapore University of Technology and Design, non-reciprocal light propagation was combined with a frequency conversion of laser light, in other words a change in the frequency and thus also the colour of the light. “We used the frequency conversion in the specially designed structures, with dimensions in the range of a few hundred nanometres, to convert infrared light – which is invisible to the human eye – into visible light,” explains Dr. Sergey Kruk, Marie Curie Fellow in Zentgraf’s group. The experiments show that this conversion process takes place only in one illumination direction for the nanostructured surface, while it is completely suppressed in the opposite illumination direction. This duality in the frequency conversion characteristics was used to code images into an otherwise transparent surface. “We arranged the various nanostructures in such a way that they produce a different image depending on whether the sample surface is illuminated from the front or the back,” says Zentgraf, adding, “The images only became visible when we used infrared laser light for the illumination.”

In their first experiments, the intensity of the frequency-converted light within the visible range was still very small. The next step, therefore, is to further improve efficiency so that less infrared light is needed for the frequency conversion. In future optically integrated circuits, the direction control for the frequency conversion could be used to switch light directly with a different light, or to produce specific photon conditions for quantum-optical calculations directly on a small chip. “Maybe we will see an application in future optical quantum computers where the directed production of individual photons using frequency conversion plays an important role,” says Zentgraf.

To the article: doi.org/10.1038/s41566-022-01018-7

[Translate to English:] Symbolbild (Universität Paderborn, Besim Mazhiqi): Paderborner Wissenschaftler entwickeln neue Technologie zur Manipulation von Licht.
Download (4 MB)

Contact

business-card image

Prof. Dr. Thomas Zentgraf

Ultrafast Nanophotonics

Write email +49 5251 60-5865
More about the person
Universität Paderborn

Warburger Str. 100
33098 Paderborn
Germany

Phone University

+49 5251 60-0
Quick links
  • Cafeteria
  • Online application
  • Library
  • PAUL
  • PANDA
Social networks
Legal notice
  • Imprint
  • Data privacy
  • Whistleblower system
  • Accessibility Declaration