Key research area “Sustainable Materials, Processes and Products”
Climate protection and resource conservation is a central task of our society. The natural sciences and engineering can make their contribution by working on solutions for sustainable materials (metals, polymers and combined hybrids), on material-specific construction, joining and manufacturing processes, specific production and simulation processes or in the field of sustainable energy supply.
To cover this vast spectrum of research, Paderborn University bundles interdisciplinary research in mechanical engineering, the natural sciences and the electrical engineering faculties in its “Sustainable Materials, Processes and Products” research area.
Key technology lightweight design
Lightweight design is a key technology that offers huge resource-saving potential, in particular through combining state-of-the-art (production) techniques with high functionality.
Cross-faculty project teams at the Institute for Lightweight Design with Hybrid Systems (ILH) and Paderborn Institute for Additive Manufacturing (PIAF) conduct research into this complex topic.
Key technology additive manufacturing
Additive manufacturing is a key technology that can directly translate evolution through Industry 4.0 into reality. Through design freedom, it enables the creation of customised, resource-efficient and function-optimised lightweight structures.
At the PIAF and Direct Manufacturing Research Centre (DMRC), cross-faculty project teams collaborate with industry on research aimed at establishing additive manufacturing processes as robust industrial manufacturing processes.
Key technology sustainable energy technology
The transformation of the energy system toward sustainable electricity, heat and mobility generated by renewable energies is one of the central social challenges of the 21st century. The aim is to transform existing energy systems globally in such a way, that they are able to operate without fossil and nuclear energy sources and reliably supply humankind with cost-effective, sustainable energy.
KET contributes toward this goal through its research in sustainable mobility concepts, smart grids, energy efficiency as well as air pollution control and resource conservation.
A combination of applied and basic research
Applied research is driven forward in well-established academic and industry partnerships and complements first-rate basic research in the field of method or material development, for example, with research also carried out in long-term projects in a national and international alliance.
The researchers leverage the state-of-the-art infrastructure of the ILH and PIAF/DMRC in Paderborn and are part of an extensive research network.
Interdisciplinary research institutions
The aim of the ILH is to take a holistic view of lightweight design and to look at issues relating to the entire lifecycle of a component. Outstanding expertise in additive manufacturing as a special manufacturing process with high lightweight design potential is bundled in the PIAF and DMRC. At the Competence Center for Sustainable Energy Technology (KET), approaches and methods are being developed with the aim of achieving a sustainable energy supply for the electricity, heat, industry, and transport sectors.
Interdisciplinary research institutions
Das Direct Manufacturing Research Center (DMRC) - Academic, ein an der Universität Paderborn angesiedeltes Transferinstitut, forscht daran, die additive Prozesskette als robustes industrielles Produktionsverfahren zu etablieren. Hier arbeiten technologieführende Industrieunternehmen Hand in Hand mit Forschern der Universität an der Industrialisierung der additiven Fertigung. Die gesamte additive Wertschöpfungskette von der Rohstoffgewinnung über die Fertigung bis zur Anwendung wird sowohl von großen als auch von kleinen und mittelständischen Unternehmen abgedeckt. Die Struktur des DMRC ist sehr flexibel und interdisziplinär; je nach den aktuellen Forschungsthemen kann die Konstellation der am DMRC beteiligten Lehrstühle verändert werden.
Derzeit arbeiten im DMRC 11 verschiedene Lehrstühle und eine große Anzahl von wissenschaftlichen Mitarbeitern zusammen.
Je nach Fragestellung und Zeithorizont finanzieren die Industriepartner des DMRC oder öffentliche Förderorganisationen Forschungsprojekte, die dann an der Universität Paderborn durchgeführt werden. Die im DMRC-Konsortium gemeinsam finanzierten Projekte werden dabei von den Industriepartnern gesteuert und kontrolliert. So können alle Partner den größtmöglichen Nutzen im Hinblick auf die Industrialisierung der DMRC-Forschungsergebnisse erzielen.
Mehr Informationen finden Sie auf den Seiten des Instituts:
Direct Manufacturing Research Center (DMRC) – Academic | Universität Paderborn
Das ILH ist eine zentrale wissenschaftliche Einrichtung der Universität Paderborn. Hier werden gezielt die Expertisen von elf Gruppen aus den Fachdisziplinen Maschinenbau, Chemie und Physik gebündelt, um neue Hybridsysteme aus verschiedenartigen Materialien zu entwickeln und erforschen. Durch anwendungsorientierte Forschung entstehen innovative Leichtbaukonzepte. Prototypen und Demonstratoren werden zusammen mit Industrie entwickelt und sichern die Realisierbarkeit ab. Die Grundlagenforschung beschäftigt sich mit der skalenübergreifenden Entwicklung von Methoden und Materialien.
In hybriden Multimatrialsystemen werden leistungsfähige Materialien wie z. B. ultrahochfeste Stähle mit Kohlenstofffaser-Kunststoff-Verbunden (CFK) intelligent kombiniert. Voraussetzung für die Entwicklung derartiger Werkstoffverbindungen ist die Analyse von Materialeigenschaften und -Grenzflächen sowie die Betrachtung der Fertigungsprozesse mit neuen Materialstrukturen. Dafür steht im ILH ein breit aufgestelltes Team von Forscher*innen und eine moderne Infrastruktur bereit.
Mehr Informationen finden Sie auf den Seiten des Instituts: https://ilh.uni-paderborn.de/
Das Kompetenzzentrum für Nachhaltige Energietechnik (KET) wurde im Januar 2012 als eine Zentrale Wissenschaftliche Einrichtung der Universität Paderborn gegründet. Die Aufgaben des KET sind Forschung, Lehre und Technologietransfer auf dem Gebiet der umweltfreundlichen und innovativen Energieerzeugung, Wandlung und Nutzung.
Die Ausrichtung und Kompetenzen der im KET kooperierenden fünf Fachgebiete und Lehrstühle der Elektrotechnik und des Maschinenbaus ermöglichen die interdisziplinäre Entwicklung fachübergreifender Lösungen energietechnischer Herausforderungen aus einer Hand.
Als Schnittstelle zwischen Industrie und universitären Forschungseinrichtungen richtet sich das KET an institutionelle und industrielle Anwender und bietet umfassende Kooperationsmöglichkeiten durch Beratung, Entwicklung, Simulation und Umsetzung im Bereich moderner Energietechnik.
Auf der Grundlage des Wissens und der Erfahrung der am KET beteiligten Partner stehen aktuelle Erkenntnisse aus dem Bereich innovativer Energietechnik zur Verfügung.
Mehr Informationen finden Sie auf den Seiten des Instituts: https://ket.uni-paderborn.de/
Selected projects in the research area
Das Direct Manufacturing Research Center (DMRC) - Academic, ein an der Universität Paderborn angesiedeltes Transferinstitut, forscht daran, die additive Prozesskette als robustes industrielles Produktionsverfahren zu etablieren. Hier arbeiten technologieführende Industrieunternehmen Hand in Hand mit Forschern der Universität an der Industrialisierung der additiven Fertigung. Die gesamte additive Wertschöpfungskette von der Rohstoffgewinnung über die Fertigung bis zur Anwendung wird sowohl von großen als auch von kleinen und mittelständischen Unternehmen abgedeckt. Die Struktur des DMRC ist sehr flexibel und interdisziplinär; je nach den aktuellen Forschungsthemen kann die Konstellation der am DMRC beteiligten Lehrstühle verändert werden.
Derzeit arbeiten im DMRC 11 verschiedene Lehrstühle und eine große Anzahl von wissenschaftlichen Mitarbeitern zusammen.
Je nach Fragestellung und Zeithorizont finanzieren die Industriepartner des DMRC oder öffentliche Förderorganisationen Forschungsprojekte, die dann an der Universität Paderborn durchgeführt werden. Die im DMRC-Konsortium gemeinsam finanzierten Projekte werden dabei von den Industriepartnern gesteuert und kontrolliert. So können alle Partner den größtmöglichen Nutzen im Hinblick auf die Industrialisierung der DMRC-Forschungsergebnisse erzielen.
Mehr Informationen finden Sie auf den Seiten des Instituts:
Direct Manufacturing Research Center (DMRC) – Academic | Universität Paderborn
Das ILH ist eine zentrale wissenschaftliche Einrichtung der Universität Paderborn. Hier werden gezielt die Expertisen von elf Gruppen aus den Fachdisziplinen Maschinenbau, Chemie und Physik gebündelt, um neue Hybridsysteme aus verschiedenartigen Materialien zu entwickeln und erforschen. Durch anwendungsorientierte Forschung entstehen innovative Leichtbaukonzepte. Prototypen und Demonstratoren werden zusammen mit Industrie entwickelt und sichern die Realisierbarkeit ab. Die Grundlagenforschung beschäftigt sich mit der skalenübergreifenden Entwicklung von Methoden und Materialien.
In hybriden Multimatrialsystemen werden leistungsfähige Materialien wie z. B. ultrahochfeste Stähle mit Kohlenstofffaser-Kunststoff-Verbunden (CFK) intelligent kombiniert. Voraussetzung für die Entwicklung derartiger Werkstoffverbindungen ist die Analyse von Materialeigenschaften und -Grenzflächen sowie die Betrachtung der Fertigungsprozesse mit neuen Materialstrukturen. Dafür steht im ILH ein breit aufgestelltes Team von Forscher*innen und eine moderne Infrastruktur bereit.
Mehr Informationen finden Sie auf den Seiten des Instituts: https://ilh.uni-paderborn.de/
Das Kompetenzzentrum für Nachhaltige Energietechnik (KET) wurde im Januar 2012 als eine Zentrale Wissenschaftliche Einrichtung der Universität Paderborn gegründet. Die Aufgaben des KET sind Forschung, Lehre und Technologietransfer auf dem Gebiet der umweltfreundlichen und innovativen Energieerzeugung, Wandlung und Nutzung.
Die Ausrichtung und Kompetenzen der im KET kooperierenden fünf Fachgebiete und Lehrstühle der Elektrotechnik und des Maschinenbaus ermöglichen die interdisziplinäre Entwicklung fachübergreifender Lösungen energietechnischer Herausforderungen aus einer Hand.
Als Schnittstelle zwischen Industrie und universitären Forschungseinrichtungen richtet sich das KET an institutionelle und industrielle Anwender und bietet umfassende Kooperationsmöglichkeiten durch Beratung, Entwicklung, Simulation und Umsetzung im Bereich moderner Energietechnik.
Auf der Grundlage des Wissens und der Erfahrung der am KET beteiligten Partner stehen aktuelle Erkenntnisse aus dem Bereich innovativer Energietechnik zur Verfügung.
Mehr Informationen finden Sie auf den Seiten des Instituts: https://ket.uni-paderborn.de/
Die additive Fertigung (AM) hat das wirtschaftliche Potenzial, herkömmliche Fertigungsverfahren zu ergänzen, insbesondere bei der Herstellung komplexer Multimaterial-Bauteile. Um die Vorteile optimierter Leichtbaustrukturen voll ausschöpfen zu können, müssen in der Regel mehrere Werkstoffe mit unterschiedlichen physikalischen Eigenschaften verwendet werden. Dennoch sind Multimaterialkombinationen aus konventionellen Verfahren aufgrund von Eigenspannungen, Rissen oder thermischen Ausdehnungsraten der verschiedenen Materialien nicht auf AM übertragbar. Außerdem sind geometrische Form- und Lagetoleranzen sowie Recyclingstrategien für Pulverabfälle, nachbearbeitete Abfälle und das Bauteil selbst noch nicht definiert. Basierend auf den 3D-Druckverfahren PBF-LB und DED zielt das Projekt „MADE-3D“ (Multi-Material Design using 3D Printing) auf die gleichzeitige Entwicklung verarbeitungsfähiger, multimaterialoptimierter Legierungen, die Entwicklung von Designkonzepten für Multimaterialstrukturen mit spezifischen Simulationen für Lastfälle und Topologieoptimierungen, sowie eine umfassende Prozessanpassung. Die Legierungs- und Prozessentwicklung wird durch fortschrittliche integrierte rechnergestützte Materialentwicklungsansätze unterstützt, die Thermodynamik-, Mikrostruktur- und Prozesssimulationen durch maschinelles/aktives Lernen kombinieren, was zu kürzeren Materialentwicklungszyklen führt. Bei Massen- und Pulverwerkstoffen wird das Recycling von Multimaterialkomponenten durch innovative Konzepte die Nachhaltigkeit der additiven Multimaterialfertigung fördern. Diese Anpassung wird zu einer erhöhten Prozesssicherheit und -geschwindigkeit führen und die Verbreitung der Multimaterial-Fertigung in der gesamten Industrie ermöglichen. Das Projekt wird für die nächsten dreieinhalb Jahre mit rund 6,7 Millionen Euro im „Horizon Europe 2022“-Programm der Europäischen Union gefördert. Das Konsortium, bestehend aus Forschungseinrichtungen, Marktführern der additiven Fertigung, Luft-/ Raumfahrt, Automobiltechnik und Start-ups, bringt ein breites Spektrum internationaler Expertise mit: Projektpartner sind neben der Leitung der Universität Paderborn: SLM Solutions; das Fraunhofer Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV (alle drei aus Deutschland); die Universität der Ägäis (Griechenland); f3nice (Italien); Exponential Technologies (Lettland); QuesTek Europe (Schweden); AVL List (Österreich); Skyrora (Großbritannien); Safran Additive Manufacturing Campus; Commissariat à l’énergie atomique et aux énergies alternatives CEA (beide aus Frankreich); Amires(Tschechien) und das Centre Suisse d’Electronique et de Microtechnique CSEM (Schweiz).
Sprecher: Prof. Dr.-Ing. Gerson Meschut, Werkstoff- und Fügetechnik
Geschäftsführer: Dr.-Ing. Mathias Bobbert, Werkstoff- und Fügetechnik
Bereits 2014 konnte das ILH das vom Land Nordrhein-Westfalen geförderte, interdisziplinär zusammengesetzte Forschungskolleg zum Thema Leichtbau erfolgreich beantragen. Im FK LEM arbeiten Forscherinnen und Forscher aus Maschinenbau, Naturwissenschaften und Soziologie zusammen. Es wird aber nicht nur interdisziplinär, sondern auch transdisziplinär kollaboriert. Das Forschungskolleg ist gekennzeichnet durch die Zusammenarbeit der Promovenden mit Akteuren aus Wirtschaft und Zivilgesellschaft. Auf diese Weise wird praxixbezogenes Wissen mit Wissenschaft verknüpft.
Die erste viereinhalbjährige Förderphase wurde positiv evaluiert und verlängert. Die zweite Förderphase des FK LEM zeichnete sich durch eine Kooperation mit dem neuen Fachbereich Technik & Diversity (TD) aus. TD erschließt Forschungszugänge mit Methoden der empirischen Sozialforschung. Somit erfolgt im Rahmen dieses Promotionsprogrammes über die technisch, naturwissenschaftliche Qualifikation der Doktorand*innen hinaus, eine Kompetenzerweiterung hinsichtlich Technik- und Nachhaltigkeitsforschung.
Das Forschungskolleg FK LEM wurde im Dezember 2022 abgeschlossen.
lm BMBF-Projekt „A:RT-D Grids“ entwickeln vier Universitäten – Universität Paderborn (mit zwei KET-Mitgliedern), Makerere University, Uganda, Nelson Mandela African Institute of Science and Technology (NM-AIST), Tansania, und die University of Witwatersrand, Südafrika – sowie das For-schungsinstitut ECOLOG, Deutschland, eine Lösung für das Stabilitätsproblem elektrischer Energie-netze in Ostafrika mit einem interdisziplinären Ansatz. Es wird eine innovative Smart-Grid-Topologie entwickelt, die auf einem zellulären System von miteinander verbundenen Mini-/Microgrids basiert. Ebenso wird eine Graduiertenschule, die neben dem allgemeinen technischen Schwerpunkt auch Fragen der sozialen, politischen und wirtschaftlichen Governance behandelt, entwickelt und aufgebaut.
Kontakt: Prof. Dr.-Ing. habil. Stefan Krauter | Elektrische Energietechnik (EET)
Im Projekt „Climate neutral Business in Ostwestfalen-Lippe (Climate bOWL)“ arbeiten Wissenschaftler*innen der Universität Paderborn, vertreten durch den Software Innovation Campus Paderborn und das Fachgebiet Leichtbau im Automobil, mit der Universität Bielefeld und den Praxispartnern Miele, GEA, Phoenix Contact sowie NTT Data interdisziplinär zusammen, um Unternehmen bei der Erreichung von Klimaschutzzielen zu unterstützen. Auf dem Weg zur Klimaneutralität bedarf es einer ganzheitlichen Herangehensweise, die ressourceneffizient die Aggregation und Bewertung von Treibhausgasemissionen (THGE) sowie die Identifizierung und Priorisierung von THGE-Reduktionsmaßnahmen ermöglicht. Dieser Herausforderung nimmt sich das Projekt Climate bOWL mit der Entwicklung eines digitalen Assistenzsystems an, welches Unternehmen bei der standardisierten und automatisierten Datenerhebung sowie bei der Identifizierung von Effizienzpotentialen unterstützt. Das Projekt wird im Rahmen des Spitzenclusters „it’s OWL“ seit April 2022 mit 1,86 Millionen Euro vom Ministerium für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen gefördert, das Gesamtvolumen des Projektes beträgt 3,16 Millionen Euro.
Projektkoordination: Dr.-Ing. Florian Schlosser | Software Innovation Campus Paderborn | FG Energiesystemtechnik
Dieses Forschungsprojekt wird im Rahmen der industriellen Forschung mit dem Ziel die Projektergebnisse in Form eines Funktionsmusters mit hohem Innovationsgrad zu demonstrieren behandelt. Die Projektinhalte des Vorhabens zielen primär darauf ab, Prozesse und Technologien zur Herstellung von Werkzeugen für die Edelstahlrohrumformung zu entwickeln, demonstrieren und abschließend anhand der Prüfung am Funktionsmuster zu validieren. Die Produktion und Applikation der Teile müssen dabei besonders auch aus finanzieller Sicht attraktiv sein, da sie u.a. Einsatz in Kostengetriebenen Branchen wie der Automobilzuliefererindustrie finden. Das Ziel ist die Effizienzsteigerung in der Produktion bei gleichzeitigen Kosteneinsparungen und niedrigeren Betriebskosten durch verlängerte Austauschzyklen.
Kontakt: Stefan Gnaase | Leichtbau im Automobil
Dieses Vorhaben wird mit Zuwendungen des Bundesministeriums für Wirtschaft und Energie im Rahmen der Richtlinie „Technologietransfer-Programm Leichtbau (TTP LB)" gefördert.
Teilprojekt im SPP 2122: Neue Materialien für die laserbasierte additive Fertigung
Prof. Dr.-Ing. Guido Grundmeier, Technische und Makromolekulare Chemie
Prof. Dr.-Ing. Mirko Schaper, Lehrstuhl für Werkstoffkunde
Unter der Leitung des Fachgebiets Leistungselektronik und Elektrische Antriebstechnik (LEA) entwickelt das KET die Infrastruktur, mit der das gekoppelte Verhalten von z. B. Batteriespeichern, Windkraftanlagen, Photovoltaikanlagen oder Blockheizkraftwerken im Labor machgebildet werden kann. Mit dem Microgrid-Labor (μG-Lab) in Paderborn wird eine Plattform für zukünftige Forschungs- und Entwicklungsprojekte geschaffen, um neue innovative Konzepte unter realistischen Bedingungen zu testen und zu verifizieren.
Kontakt: Dr.-Ing. Karl Stephan Stille | Leistungselektronik und Elektrische Antriebstechnik (LEA)
Optimierungsbasierte Entwicklung von Hybridwerkstoffen
Ziel von „HyOpt“ ist es, den anforderungsgerechten Leichtbau mit verschiedenartigen Werkstoffen voranzutreiben. Dafür entwickeln die WissenschaftlerInnen eine Toolbox, die dem Design neuer Hybridwerkstoffe dient. Diese besteht aus einer Softwarelösung sowie aus smarten und anpassungsfähigen Fertigungsprozessen, die für die Herstellung der Werkstoffe notwendig sind. Letztlich wird damit auch die Weiterverarbeitung zu Leichtbaukomponenten ermöglicht. Das Vorhaben, das ein Volumen von rund zwei Millionen Euro hat, wird bis April 2022 vom Land NRW und der EU aus Mitteln des Europäischen Fonds für Regionale Entwicklung (EFRE) gefördert.
Ansprechpartner:
Steffen Tinkloh, ILH | Leichtbau im Automobil
Ziel des Projektes, das gemeinsam von deutschen sowie mongolischen Partner verfolgt wird, ist die Entwicklung eines für die harschen Bedingungen der Mongolei geeigneten Heizsystems, das regenerativ mittels Photovoltaik (PV) erzeugte Energie in Wärme (H) umwandelt und speichert.
Kontakt: Emre Acar | Fluidverfahrenstechnik
Im Rahmen des Projektes RENBuild wird ein innovatives Gesamtkonzept zur kombinierten regenerativen Versorgung von Gebäuden mit Wärme, Kälte, Strom und Frischluft entwickelt und im realen Einsatz evaluiert. Im Fokus steht dabei eine möglichst umfassende und effiziente Nutzung zur Verfügung stehender regenerativer Umweltenergie und die Verknüpfung mit LowEx-Systemen zur Gebäudekühlung, Heizung und Lüftung. Ziel ist es, ein Gewerke übergreifendes Gesamtsystem zu entwickeln, dessen optimierte Komponenten eine möglichst hohe Energieeffizienz bei gleichzeitiger Nutzung regenerativer Energien erlauben.
Kontakt: Matti Grabo | Fluidverfahrenstechnik
Contact
Prof. Dr. Thomas TrösterChairman of the Institute for Lightweight Design with Hybrid Systems (ILH) |
Office: Y2.116 |
Prof. Dr.-Ing. Hans-Joachim SchmidChairman of the Direct Manufacturing Research Center academic (DMRC) |
Office: E3.319 |
Prof. Dr.-Ing. Henning MeschedeChairman of the Competence Center for Sustainable Energy Technology (KET) |
Office: P6.2.073 |