FOR 2457 – Scalable Audio Features for Clustering and Classification with Privacy Constraints

Overview

Ubiquitous computing and the Internet of Things will lead to a world where sensors are everywhere and huge amounts of sensor data are collected, processed, and stored. Without doubt, the aims of these sensor networks such as the support of elderly people (AAL), increasing security of public spaces, or improving the energy efficiency of buildings are beneficial per se and beyond question. However, many of these sensor networks are conceived to observe human activity in rather private settings, and as a consequence, significant privacy issues emerge. Among the available sensors, video and acoustic sensors are probably perceived as the most intrusive and disturbing. It is clearly foreseeable that the ubiquitous presence of acoustic sensors would have a strong effect on conversations, thoughts, and human behavior in general and, as a consequence, would not find much acceptance.

The objective of this research project is to explore the balance between data utility and data privacy in the context of acoustic sensor networks. We conjecture that audio analysis and classification tasks can be performed on the basis of privacy-preserving audio features which are aggregated to varying degrees across the dimensions of time, frequency, and space. Therefore, we will use features which are scalable across these dimensions and which will allow the control of the balance between their performance in clustering and classification tasks and privacy. To this end, we will consider a selection of clustering and classification experiments and a corresponding taxonomy of privacy levels. We will analyse the privacy of feature sets at various levels of detail in terms of information theoretic measures and juxtapose these objective measures to the feature utility in practical applications.

Key Facts

Grant Number:
282835863
Project type:
Research
Project duration:
01/2016 - 12/2021
Funded by:
DFG
Websites:
Homepage
DFG-Datenbank gepris

More Information

Principal Investigators

contact-box image

Prof. Dr. Reinhold Häb-Umbach

Communications Engineering / Heinz Nixdorf Institute

About the person
contact-box image

Rainer Martin

Ruhr-Universität Bochum

About the person (Orcid.org)

Contact

If you have any questions about this project, contact us!

Alexandru Nelus

Ruhr-Universität Bochum

contact-box image