TRR 358 - Integral structures in geometry and representation theory

Overview

Integral structures arise in many places throughout mathematics: as lattices in Euclidean space, as integral models of reductive groups and algebraic schemes, or as integral representations of groups and associative algebras. Even questions about the most basic example of an integral structure, the ring of integers Z, very soon lead into the fields of analysis, algebra, or geometry. In the same vein, investigations of integral structures are most successfully treated by viewing them from different perspectives, often require the usage of most advanced mathematical methods, and frequently lead to unexpected connections.This point is illustrated by the classification of wallpaper groups, i.e., discrete groups of isometries of the plane that contain two linearly independent translations. As intricate double-periodic arabesques, we meet them in the medieval Alhambra palace in Granada. It is a classical fact that there are precisely 17 wallpaper groups. This result has a geometric aspect, as it provides the number of flat compact orbifold surfaces; and it also has an interpretation within representation theory: it is part of the classification of hereditary categories over the field of real numbers.As integral structures necessitate a combined approach from different mathematical sub-disciplines, we will embark on a broad research programme reaching from algebraic geometry to analysis on manifolds, from geometric group theory and algebraic combinatorics to representation theory of associative algebras. With joint forces from the participating universities, we intend to answer major questions in the algebraic and analytic theory of automorphic forms, categorical representation theory and algebraic geometry, as well as classical and p-adic harmonic analysis on symmetric spaces.

DFG Programme CRC/Transregios

Current projects

A01 - The structure of (almost) lattices – algebra, analysis, and arithmetic (Project Heads Alfes-Neumann, ClaudiaBaake, MichaelVoll, Christopher)

A02 - Algebraic and arithmetic aspects of aperiodicity (Project Heads Baake, MichaelKlüners, Jürgen)

A03 - Codes and designs (Project Heads Baumeister, BarbaraRösler, MargitSchmidt, Kai-Uwe)

A04 - Combinatorial Euler products (Project Heads Blomer, ValentinKlüners, JürgenVoll, Christopher)

A05 - Affine Kac–Moody groups: analysis, algebra, and arithmetic (Project Heads Burban, IgorBux, Kai-UweGlöckner, Helge)

A06 - Zeta functions of integral quiver representations (Project Heads Crawley-Boevey, WilliamVoll, Christopher)

A07 - Matroids, codes, and their q-analogs (Project Heads Kühne, LukasSchmidt, Kai-Uwe)

B01 - Theta lifts and equidistribution (Project Heads Alfes-Neumann, ClaudiaBlomer, Valentin)

B02 - Spectral theory in higher rank and infinite volume (Project Heads Blomer, ValentinWeich, Tobias)

B03 - Spherical harmonic analysis of affine buildings and Macdonald theory (Project Heads Bux, Kai-UweHilgert, JoachimRösler, Margit)

B04 - Geodesic flows and Weyl chamber flows on affine buildings (Project Heads Bux, Kai-UweHilgert, JoachimWeich, Tobias)

B05 - p-adic L-functions, L-invariants and the cohomology of arithmetic groups (Project Heads Januszewski, FabianSpieß, Michael)

B06 - Equivariant cohomology and Shimura varieties (Project Head Spieß, Michael)

C01 - Hyper-Kähler varieties and moduli spaces (Project Heads Barros, IgnacioVial, Ph.D., Charles)

C02 - Hereditary categories, reflection groups, and non-commutative curves (Project Heads Baumeister, BarbaraBurban, IgorCrawley-Boevey, William)

C03 - Tame patterns in the representation theory of reductive Lie groups and arithmetic geometry (Project Heads Burban, IgorCrawley-Boevey, WilliamJanuszewski, Fabian)

C04 - Counting points on quiver Grassmannians (Project Heads Franzen, HansSauter, Julia)

C06 - Stratifying derived categories over arbitrary bases (Project Heads Krause, HenningLau, Eike)

C07 - Derived-splinters and full exceptional collections (Project Heads Krause, HenningLau, EikeVial, Ph.D., Charles)

C08 - Cohomological structures of hyper-Kähler varieties (Project Heads Lau, EikeVial, Ph.D., Charles)

Z - Central tasks of the Collaborative Research Centre (Project Head Bux, Kai-Uwe)

Applicant Institution Universität Bielefeld

Co-Applicant Institution Universität Paderborn

Participating University Rheinische Friedrich-Wilhelms-Universität Bonn

Spokesperson Professor Dr. Kai-Uwe Bux

News

13.09.2024

Top In­ter­na­tion­al Math­em­aticians Meet in Pader­born

Read more
More news

More Information

Principal Investigators

contact-box image

Prof. Dr. Helge Glöckner

Infinite-dimensional Analysis and Geometry

About the person
contact-box image

Prof. Dr. Joachim Hilgert

Lie Theory

About the person
contact-box image

Prof. Dr. Jürgen Klüners

Computer Algebra and Number Theory

About the person
contact-box image

Prof. Dr. Margit Rösler

Harmonic Analysis

About the person
contact-box image

Prof. Dr. Tobias Weich

Institute of Mathematics

About the person
contact-box image

Prof. Dr. Kai-Uwe Schmidt

Diskrete Mathematik

About the person
contact-box image

Prof. Dr. Igor Burban

Algebra

About the person
contact-box image

Prof. Dr. Fabian Januszewski

Algebra and Number Theory

About the person
contact-box image

Jun. Prof. Dr. Ignacio Barros

Complex Algebraic Geometry

About the person
contact-box image

PD Dr. Hans Franzen

Algebra

About the person
contact-box image

Claudia Alfes-Neumann

Universität Bielefeld

About the person (Orcid.org)
contact-box image

Michael Baake

Universität Bielefeld

About the person (Orcid.org)
contact-box image

Barbara Baumeister

Universität Bielefeld

About the person (Orcid.org)
contact-box image

Valentin Blomer

Universität Bonn

About the person (Orcid.org)
contact-box image

Kai-Uwe Bux

Universität Bielefeld

About the person (Orcid.org)
contact-box image

William Crawley-Boevey

Universität Bielefeld

About the person (Orcid.org)
contact-box image

Henning Krause

Universität Bielefeld

About the person (Orcid.org)
contact-box image

Lukas Kühne

Universität Bielefeld

About the person (Orcid.org)
contact-box image

Eike Lau

Universität Bielefeld

contact-box image

Julia Sauter

Universität Bielefeld

contact-box image

Michael Spieß

Universität Bielefeld

contact-box image

Charles Vial

Universität Bielefeld

About the person (Orcid.org)
contact-box image

Christopher Voll

Universität Bielefeld

About the person (Orcid.org)

Cooperating Institutions

Universität Bielefeld

Cooperating Institution

Universität Bonn

Cooperating Institution

Go to website