Monolithically Integrated Opto-Electronic Frequency Synthesizer in Silicon Photonics
Overview
Low jitter signal sources are in widespread use for object detection, navigation systems, and ultra-high speed data communication systems. The jitter of the signal sources is dominated by the reference signal source which is a Surface Acoustic Wave (SAW) or a quartz oscillator. While these reference oscillators are standard for communication systems, the optical pulse train generated by a Mode Locked Laser (MLL) can have a better jitter performance by 2-3 orders of magnitude. It has also been shown that by using an electro-optical locking scheme, a microwave signal can be locked to an MLL [4]. Such Opto-Electronic Phase Locked Loops (OEPLL) have a great potential for a new class of low jitter frequency synthesizers.
Phase noise comparison of different technologies
The main drawbacks of these OEPLLs are their bulky and expensive optical components. Electronic-photonic integrated circuits based on silicon photonics technology offer the potential for extreme miniaturization of these optical components as well as integration of optics and low cost.
The goal of this project is to implement a monolithically integrated OEPLL with extremely low phase noise. In cooperation with our project partners at the Ruhr University of Bochum, we develop the next generation of low jitter microwave signal sources. This type of signal source employs a PLL that uses an MLL as a reference. In order to fully take advantage of the reference signal in the optical domain, the phase detection is done electro-optically using a Mach-Zehnder Modulator (MZM).
Block diagram of the opto-electronic frequency synthesizer
In the first phase, the whole system will be implemented using modular components. In the second phase, the MZM and the electronics will be integrated into a single silicon chip. The work is accompanied by theoretical investigation which will be validated by measurements.
The additive jitter of the OEPLL is expected to be less than the reference MLL jitter. The microwave signal then would have an in-band jitter which surpasses conventional electronic PLLs.
References:
[1] Kim et al, “Sub-100-as timing jitter optical pulse trains from mode-locked Er-fiber lasers,” Optics letters, vol. 36, no. 22, pp. 4443-4445, 2011.
[2] “Ultra Low Phase Noise Oven Controlled Crystal Oscillator,” Vectron, Datasheet OX-305.
[3] “Voltage Controlled SAW Oscillator Surface Mount Model,” Synergy Microwave, Datasheet HFSO1000-5.
[4] Jung et al, “Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers,” Optics letters, vol. 37, no. 14, pp. 2958-2960, 2012
Key Facts
- Grant Number:
- 370491995
- Project duration:
- 06/2017 - 05/2021
- Funded by:
- DFG
More Information
Contact
If you have any questions about this project, contact us!
Meysam Bahmanian
System and Circuit Technology / Heinz Nixdorf Institut
Wissenschaftlicher Mitarbeiter
Results
Das Projekt zielte auf die Untersuchung und Realisierung rauscharmer optoelektronischer PLL-Frequenzsynthesizer (OEPLL) mit modengekoppelten Diodenlasern als Referenzoszillatoren. Im Rahmen des Projektes wurden verschiedene Ansätze für modengekoppelte Laserdiodensysteme in Bezug auf ihre Jittereigenschaften untersucht. Dabei wurde erstmals ein selbst-modengekoppelter Diodenlaser mit externem Resonator demonstriert und analysiert sowie erstmals ein Vergleich von Selbst-Modenkopplung zu passiver Modenkopplung durchgeführt. Alle untersuchten Diodenlaser lieferten jedoch Jitterwerte, die für die hier anvisierte Anwendung als optischer Referenzoszillator deutlich zu hoch sind. Des Weiteren wurde die OEPLL mathematisch und experimentell untersucht und gezeigt, dass mit rauscharmen modengekoppelten Faserlasern optoelektronische Frequenzsynthesizer auf OEPLL-Basis mit mehreren Oktaven Verstimmbereich und exzellentem Phasenrauschen realisiert werden können. Insbesondere wurden Rekordwerte im Hinblick auf den Verstimmbereich erreicht und gezeigt, dass das Phasenrauschen der OEPLL bei vergleichbarem Verstimmbereich deutlich geringer als das der besten rein elektronischen Frequenzsynthesizern ist. Octave-Band Microwave Frequency Synthesizer Using Mode-Locked Laser as a Reference. In: 2019 International Topical Meeting on Microwave Photonics (MWP), S. 1-4, Ottawa, ON, Canada, Canada, 7. - 10. Okt. 2019 Bahmanian, Meysam; Tiedau, Johannes; Silberhorn, Christine; Scheytt, Christoph (Siehe online unter https://doi.org/10.1109/mwp.2019.8892046) Theory of an Optoelectronic Microwave Phase-locked Loop based on a MLL reference and MZM-based Optoelectronic Phase Detection. In: Modellierung photonischer Komponenten und Systeme, Meiningen, Deutschland, Jan. 2019 Bahmanian, Meysam; Scheytt, Christoph Amplitude noise and RF response analysis of 1 GHz mode-locked pulses from an InP- based laser chip at 1550 nm. 2020 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, IEEE M. A. Alloush, M. van Delden, A. Bassal, C. Brenner, T. Musch, M. C. Lo, L. Augustin, R. Guzmán, G. Carpintero, M. R. Hofmann (Siehe online unter https://doi.org/10.1109/ipc47351.2020.9252313) Comparison of self-mode-locking in monolithic and external cavity diode laser at 1550 nm. Proceedings SPIE Photonics West Volume 11301, Novel In-Plane Semiconductor Lasers XIX; 113011T (2020) M. A. Alloush, A. Bassal, C. Brenner, C. Fortin, K. Mekhazni, K. Mekhazni, C. Calò, M.R. Hofmann (Siehe online unter https://doi.org/10.1117/12.2545780) Femtosecond RMS timing jitter from 1 GHz InP on-chip mode-locked laser at 1550 nm. Conference on Lasers and Electro-Optics / Pacific Rim 2020, Sydney Australia, OSA Technical Digest (Optical Society of America, 2020), paper C4C_2 M. A. Alloush, A. Bassal, C. Brenner, M. C. Lo, R. Guzmán, L. Augustin, G. Carpintero, M. R. Hofmann (Siehe online unter https://doi.org/10.1364/cleopr.2020.c4c_2) Self-mode-locking and chirp compensation in an external cavity diode laser at 1550 nm. Proceedings SPIE Photonics Europe Volume 11356, Semiconductor Lasers and Laser Dynamics IX; 113560H (2020) M. A. Alloush, A. Bassal, C. Brenner, C. Fortin, K. Mekhazni, P. Gamarra, C. Calò, M.R. Hofmann (Siehe online unter https://doi.org/10.1117/12.2555946) Ultra-Low Phase Noise Frequency Synthesis for THz Communications Using Optoelectronic PLLs. In: International Workshop on mobile THZ Systems (IWMTS), 2. - 3. Jul. 2020 IWMTS cheytt, Christoph; Wrana, Dominik; Bahmanian, Meysam; Kallfass, Ingmar (Siehe online unter https://doi.org/10.1109/iwmts49292.2020.9166347) Wide- Band Frequency Synthesizer with Ultra-Low Phase Noise Using an Optical Clock Source. In: 2020 IEEE/MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, USA, 4. - 6. Aug. 2020, IEEE Bahmanian, Meysam; Fard, Saeed; Koppelmann, Bastian; Scheytt, Christoph (Siehe online unter https://doi.org/10.1109/ims30576.2020.9224118) A 2-20-GHz Ultralow Phase Noise Signal Source Using a Microwave Oscillator Locked to a Mode-Locked Laser. IEEE Transactions on Microwave Theory and Techniques, 69(3): S. 1635-1645, Mrz. 2021 Bahmanian, Meysam; Scheytt, Christoph (Siehe online unter https://doi.org/10.1109/tmtt.2020.3047647) Femtosecond pulse generation from external cavity diode laser based on self-mode-locking. Optics Letters - Vol. 46, Issue 2, pp. 344-347 (2021) Mohammad Ali Alloush, Carsten Brenner, Cosimo Calo, Martin R. Hofmann (Siehe online unter https://doi.org/10.1364/ol.415336) Passive- and self-mode-locking based ultrashort pulse generation in monolithic diode laser at 1550 nm. SPIE Photonics West Digital Forum, 06.-11.03. 2021 M.A. Alloush, N. Kleemann, L. Braun , C. Brenner, M. Zander, W. Rehbein, M. Moehrle, M. R. Hofmann (Siehe online unter https://doi.org/10.1117/12.2583134) RF Analysis of a Sub-GHz InP-Based 1550 nm Monolithic Mode-Locked Laser Chip. IEEE Photon. Technol. Lett. 33, 828 (2021) M. A. Alloush, M. van Delden, A. Bassal, N. Kleemann, C. Brenner, M.-C. Lo, L. Augustin, R. Guzman, T. Musch, G. Carpintero, and M. R. Hofmann (Siehe online unter https://doi.org/10.1109/lpt.2021.3083096)Projektbezogene Publikationen (Auswahl)