Projektlogo

Festkörperbasierte Schlüsselbauelemente für die Quantenkommunikation / Q.link.X - Quantenrepeater für eine abhörsichere Kommunikation über große Distanzen

Overview

In the course of the digitalization of our society, data security and secure communication are becoming increasingly important. Quantum communication offers a promising approach for a fundamental solution to the security issues at hand: It uses quantum states as information carriers that cannot be cloned or read unnoticed due to fundamental physical laws. The Federal Ministry of Education and Research (BMBF) is funding the research and demonstration of such a quantum technology with a total of 14.8 million euros from 2018 to 2021 through the establishment of the joint project "Quantum Link Extension" (Q.Link.X). Within the framework of the project, quantum repeaters will be implemented for secure key transmission over greater distances. In the Q.Link.X network, 24 partners from research and industry have networked to advance the key technology of quantum repeaters.

Research contact: Prof. Dr. Artur Zrenner, Prof. Dr. Christine Silberhorn, Prof. Dr. Dirk Reuter

Motivation

Im Zuge der Digitalisierung gewinnen Datensicherheit und nachweisbar sichere Kommunikation kontinuierlich an Bedeutung. Aktuell werden hierfür Verschlüsselungsverfahren eingesetzt, deren Sicherheit weitestgehend auf der Leistungsfähigkeit heutiger Rechner beruht. Sollte eines Tages ein wesentlich leistungsstärkerer Computer, wie beispielsweise ein Quantencomputer, verfügbar sein, könnten diese Verfahren unbrauchbar werden. Auch heute übertragenen Daten können betroffen sein, wenn sie aufbewahrt und mit künftigen Computergenerationen entschlüsselt werden. Es ist daher dringend erforderlich, nach alternativen kryptographischen Verfahren und Kommunikationstechnologien zu forschen und ihre Einsatzmöglichkeiten in verschiedenen Anwendungsszenarien zu prüfen.


Die Quantenkommunikation bietet dafür einen vielversprechenden Lösungsansatz, der auf den Grundprinzipien der Quantenphysik aufbaut. Dabei werden Quantenzustände zur Schlüsselverteilung eingesetzt, die aufgrund fundamentaler physikalischer Gesetze weder kopiert noch mitgelesen werden können. Die Sicherheit der Quantenkommunikation wird also nicht durch algorithmische Methoden gewährleistet – das ist ein Paradigmenwechsel in der Daten- und Nachrichtenverschlüsselung. Die Umsetzung erster Quantenkommunikationsstrecken mit konventionellen Glasfasern stößt derzeit jedoch an technologische Grenzen: Bei der Übertragung der Quanteninformation mit Lichtteilchen (Photonen) kommt es zu unvermeidbaren Leitungsverlusten, wodurch Übertragungsstrecken auf unter 100 km begrenzt sind. Um diese Grenze ohne Sicherheitseinschränkungen zu überwinden, ist die Entwicklung sogenannter Quantenrepeater erforderlich. Dabei handelt es sich um spezielle quantenphysikalische Signalprozessoren, die den Quantenzustand der Photonen nicht zerstören. Damit wird eine Signalübertragung über weit mehr als 100 km mit der verbreiteten Glasfasertechnologie möglich.

Objective

Ein Quantenrepeater verbindet zwei oder mehrere Punkt-zu-Punkt-Verbindungen mithilfe von Quantenspeichern und einfacher Quanteninformationsverarbeitung. Das Verbundprojekt Q.Link.X „Quanten-Link-Erweiterung“ hat die erstmalige Realisierung von Quantenrepeatern zum Ziel. Diese basieren auf drei verschiedenen technischen Plattformen. Dabei handelt es sich um sogenannte Quantenpunkt- und Diamant-Farbzentren-Systeme sowie um eine Kombination atomarer und ionischer Systeme, deren Leistungsfähigkeit auf Teststrecken erprobt werden soll. Basierend auf einem gemeinsamen Übertragungsprotokoll sollen die Vorteile der jeweiligen Systeme einander gegenübergestellt werden und so die Basis für einen hybriden Quantenrepeater geschaffen werden. Darüber hinaus wird der Anschluss an Glasfasern mit den technisch üblichen Übertragungswellenlängen analysiert und es werden theoretische Grundlagen für zukünftige Quantenkommunikationssysteme entwickelt.

Innovation

In Q.Link.X sollen erstmals nicht nur einzelne Komponenten eines Quantenrepeaters erforscht und entwickelt werden. Stattdessen sind vollständige und weitreichende Kommunikationsstrecken basierend auf unterschiedlichen Technologieplattformen geplant. Die Analyse der Ergebnisse in einer Roadmap ebnet den Weg zu einem skalierbaren Quantenrepeater, der künftig alle Vorteile der verschiedenen Technologien miteinander kombiniert. Ein wichtiges Augenmerk liegt dabei auf der Realisierbarkeit aus industrieller und ingenieurstechnischer Sicht. Die Ergebnisverwertung in Deutschland wird durch die geplanten Patente und Ausgründungsbestrebungen des Konsortiums gesichert. Durch das Projekt werden so die wissenschaftlichen und wirtschaftlichen Voraussetzungen für zukünftige Quanten-IKT-Systeme in Deutschland geschaffen.

Key Facts

Project duration:
08/2018 - 07/2021
Funded by:
BMBF
Websites:
Profilbereich Optolelektronik und Photonik
Projekt Q.Link.X

More Information

Principal Investigators

contact-box image

Prof. Dr. Artur Zrenner

Nanostructure Optoelectronics (until 2022)

About the person
contact-box image

Prof. Dr. Christine Silberhorn

Integrated Quantum Optics

About the person
contact-box image

Prof. Dr. Dirk Reuter

Optoelectronic materials and devices

About the person

Cooperating Institutions

Karlsruher Institut für Technologie (KIT)

Cooperating Institution

Go to website

Humboldt-Universität zu Berlin

Cooperating Institution

Go to website

Freie Universität Berlin

Cooperating Institution

Go to website

Swabian Instruments GmbH

Cooperating Institution

Go to website

Universität Ulm

Cooperating Institution

Go to website

Technische Universität Dortmund

Cooperating Institution

Go to website

Universität Kassel

Cooperating Institution

Go to website

Ruhr-Universität Bochum

Cooperating Institution

Go to website

Universität Bonn

Cooperating Institution

Go to website

Universität Düsseldorf

Cooperating Institution

Go to website

Universität Würzburg

Cooperating Institution

Go to website

Universität des Saarlandes

Cooperating Institution

Go to website

Universität Stuttgart

Cooperating Institution

Go to website

Technische Universität München (TUM)

Cooperating Institution

Go to website

Technische Universität Berlin

Cooperating Institution

Go to website

Universität Hannover

Cooperating Institution

Go to website

Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW Dresden)

Cooperating Institution

Go to website

Universität Mainz

Cooperating Institution

Go to website

Universität Bremen (UB)

Cooperating Institution

Go to website

Ludwig-Maximilians-Universität München

Cooperating Institution

Go to website

Max-Planck-Institut für Quantenoptik (MPQ)

Cooperating Institution

Go to website

Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI (Fraunhofer HHI)

Cooperating Institution

Go to website

HighFinesse

Cooperating Institution

Go to website

Contact

If you have any questions about this project, contact us!

Prof. Dr. Artur Zrenner

Nanostructure Optoelectronics (until 2022)

Professor

contact-box image

Prof. Dr. Christine Silberhorn

Integrated Quantum Optics

Professorin - Leiterin - Lehrstuhlinhaberin

contact-box image

Prof. Dr. Dirk Reuter

Optoelectronic materials and devices

Professor - Leiter

contact-box image