Initial situation
Press-hardenable steels have been used to produce high-strength structural components in lightweight automotive construction since the mid-1980s. Since then they have played an important role in meeting increasingly stringent safety regulations and climate targets. The number of components manufactured per year has been rising steadily since the process was introduced. While 3 million parts per year were manufactured in 1987, the number of manufactured parts in 2017 is already estimated at 300 million. Modern automotive bodies have a share of press-hardened components in the total mass of the BIW of up to 40%. This highlights the relevance of the process to the automotive industry and the importance it has in producing lightweight, durable body components.
In the industrial press hardening process, the blanks are usually heated in a continuous furnace, such as the roller hearth furnace. Due to the heat transfer in the oven in the form of radiation and convection, heating times of up to 5 minutes are required to heat the blanks to a temperature of 950°C. The blanks are then heated to the required temperature. To ensure that sufficient blanks are available to maintain the press cycle, the furnaces must be designed to be correspondingly long. This results in typical furnace lengths of more than 40m. In addition, roller hearth furnaces have long heating and cooling times on the one hand, and on the other, strong temperature fluctuations can damage the ceramic rollers used to transport the piece goods. For this reason, the furnaces often continue to be heated even during a production stoppage in order to ensure smooth operation. This leads to high energy requirements even when a production line is at a standstill.
Idea
Induction heating offers many advantages here as an alternative to the conventional roller hearth furnace. Due to the heat generated directly in the component, higher heating rates and better efficiencies can be realized than with heat transfer by convection and radiation. This makes induction a space-saving and energy-efficient process for heating steel components. The process is therefore already finding industrial application in the melting, forging and heat treatment of components. However, the potential of induction for heating sheet blanks in the press hardening process has also been increasingly investigated in recent years. A major focus of these investigations is the influence of induction heating on the homogeneity of the heating and the component properties of the sheet metal blanks.